
Vickers Ventiles

Elektronisches PID-Reglermodul EHA-PID-201-A-20

Frontplattendarstellung

Allgemeine Beschreibung

Dieses Modul gehört zu einer Baureihe von Steurmodulen mit Schnell-befestigungen für den Einbau in Schaltschränken auf Montageschienen nach DIN EN 50022 oder DIN EN 50035. Deise Einheiten eignen sich in idealer Weise für die Verwendung in Steuersystemen mit Vickers Proportionventilen der Baureihe KA und KB mit integrierten Verstäkern, in denen externe Rampengenerierung, Umsetzung von Strom-Sollerwertsignalen in Spannungsignale

Alle Einstell-Potentiometer, LEDs und Schalter sind von der Frontplatte des Moduls zugänglich.

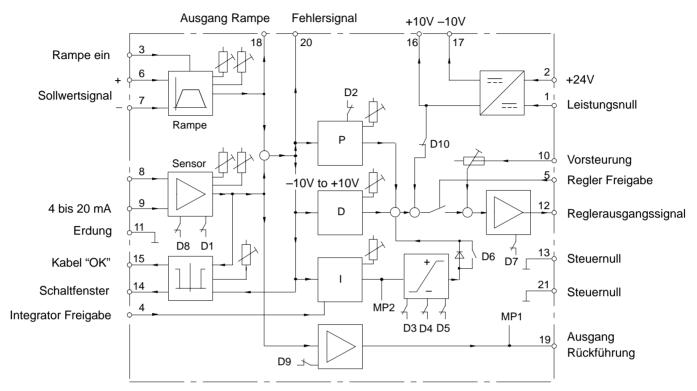
Merkmale und Vorteile

- Bietet eine Verbesserung des Steuersystems für Vickers "KA" und "KB" Proportionalventile mit integriertem Verstärker
- Schnellbefestigung auf Schienen nach DIN EN 50022 oder DIN EN
- 24V DC Stromversorgung mit breitem Toleranzband
- Ausgangssignal ±10V DC
- Anschlußklemmen reduzieren die Installationskosten
- Alle Einstellungen für die Bedienung sind deutlich gekennzeichnet

- LEDs zur Statusanzeige
- Geeignet zur Druck-, Geschwindigkeits-, Positions- und p/Q-Regelung im geschlossenen Regelkreis. Integrierte Wahlschalter werden für die interne Konfiguration des Reglers verwendet
- Die Parameter P, I und D des Reglers sowie die Rampenfunktionen sind unabhängig einstellbar
- Der Ausgang wird durch ein externes 24V-Signal freigegeben
- Bipolare Referenz-Spannungen sind für externe Verwendung erhältlich

usw. erfolgen soll.

Dieses Produkt entspricht den Anforderungen der EU-Vorschrift zur elektromagnetischen Kompatibilität (EMC) 89/336/EEC, Ergänzung 91/263/EEC, 92/31/EEC und 93/68/EEC, Artikel 5. Anweisungen zum Einbau mit maximalem Schutz sind in dieser Veröffentlichung und in der Publikation 2468 "Anweisung für die Verdrahtung von elektronischen Vickers-Produkten" enthalten. Schaltungen, für die diese Vorschrift zutrifft, sind mit dem Symbol (Elektromagnetische Kompatibilität [EMC]) gekennzeichnet.

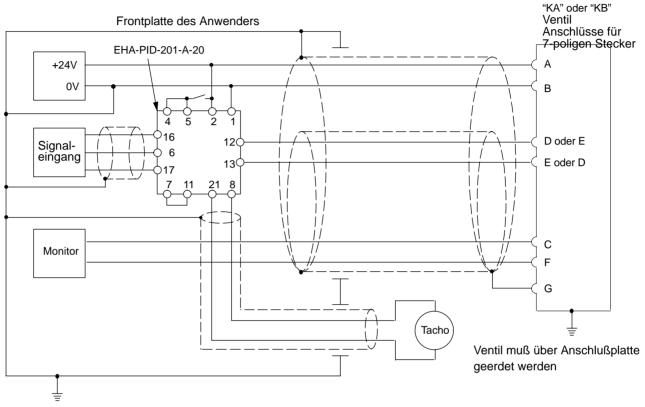

Kenngrößen

Stromversorgung: Nominalbereich	[2]	24V DC nominal x 6W 18 bis 36V DC einschl. ±10% Restwelligkeit	
Erdung Stromversorgung Steuerspannung	[1] [16] [17]		
Differenzverstärker-Eingänge: Positiv Negativ Sensor Eingänge: Eingang Spannung Eingang Strom Erdung Normierung Vorsteuersignal Überwachung Sensorfehler (nur für Sensoren mit einem Stromausgang von 4 bis 20 mA)	[6] [7] [8] [9] [11] [10]	\pm 10V; 100 k Ω \pm 10V; 1 M Ω 0 bis 20 mA oder 4 bis 20 mA; 100 Ω \pm 10V; 6 k Ω	
Geschaltete Eingänge: Freigabe Rampe Freigabe Integrator Freigabe PID-Regler Spannung eingeschaltet Spannung ausgeschaltet Eingangsimpedanz	[3] [4] [5]	17 bis 40 0 bis 3,5V 10 kΩ	
Geschaltete Ausgänge: Sensor und Kabel OK Sensor- oder Kabelfehler Laststrom (stetig kurzschlußfest) Dieser Ausgang sollte nur in Verbindung mit Sensoren mit einem Stromausgang von 4 bis 20 mA verwendet werden. Einstellbares Schaltfenster für die Regelabweichung Sensor paßt den Bedarf an Sensor paßt den Bedarf nicht an Laststrom (stetig kurzschlußfest) Die Last am Anschluß [14] und [15] muß geerdet werden	[15] [14]	V(zufuhr)-2V < 3V < 100 mA V(zufuhr)-2V < 3V < 100 mA	
Analoge Ausgänge: Ausgang PID-Regler Sensorsignal (Rückführung) Ausgangssignal Rampe Bereich Fehlersignal (invertiert) (Differenz zwischen Bedarfssignal und Sensorsignal)	[12] [19] [18]	± 10V x 5 mA Temperaturdrift:< 1 mV/°C thru 0-50°C ± 10V x 1 mA	

Fortsetzung nädiste Seite

Potentiometer: P-Anteil (abhängig von DIL-Schalter D2) I-Anteil (abhängig von DIL-Schaltern D3 bis D5) D-Anteil Normierung Vorsteuersignal Rampeneinstellung, separate Beschleunigung und Verzögerung Verstärkung Sensor Offset Sensor Schaltfenster		0,1 to 50 V/V 0,5 to 100 V/S/V 0 to 0,05 V/V/S 20% to 100% 50 ms to 5s 0,9 to 1,3 -10V to +10V ±0,1V to ±1V	
Meßsignale: Sensorsignal (Rückführung) Integratorausgang Meßpunkt-Impedanz	[M1] [M2]	±10V ±10V 10 kΩ	
Anschlüsse		Schraubklemmen	
Empfohlene Leiterquerschnitte, alle Anschlüsse		0,5 to 2,5 mm ² (AWG 12)	
Schutzart		IEC 529 IP 20	
Vibration: Vickers Umwelt-Spezifikationen (Klasse 1 Ebene 2)		IEC 68-2-6	
Elektromagnetische Kompatibilität (EMC): Strahlung Störfestigkeit		EN-50081-2 EN-50082-2	
Umgebungstemperaturebereich: Betriebstemperatur Lagertemperatur		0°C bis +50°C -25°C bis +85°C	
Einbau		Montageschienen nach DIN EN 50022 oder DIN EN 50035	
Gehäusewerkstoff		Polyamid 6.6	
Masse		0,3 kg	

Anschlußschema


Hinweis: Das unbenutzte Eingangssignal Kontakt 6 oder 7 muß mit dem 0V-Anschluß (Kontakt 11, 13 oder 21) verbunden werden.

Achtung Beim Einschalten darf der Integrator erst freigegeben werden, wenn alle hydraulischen und elektrischen Signale anliegen und sich stabilisiert haben. Wird der Integrator noch während dieser Übergangzeit freigegeben, kann dies plötzliche, unkontrollierte Bewegungun hervorrufen.

Verdrahtungsschema

Einfache Geschwindigkeitssteuerung im geschlossenen Regelkreis

0V muß geerdet werden

↓ Kundenseitige Erdung

Warnung: Elektromagnetische Kompatibilität (EMC)

Es muß sichergestellt werden, daß die Einheit gemäß dem Anschlußschema in dieser Veröffentlichung verdrahtet ist. Um den wirksamen Schutz des Elektroschaltschranks zu gewährleisten, müssen die Ventil- Anschlußplatte oder der Systemblock und die Kabelabschirmung an einen geeigneten Erdungspunkt angeschlossen werden. Für den

integrierten Verstärker muß der 7-polige Metall-Steckverbinder, Teil-Nr. 934939, verwendet werden. In allen Fällen müssen das Ventil und das Kabel so weit wie möglich von der Quelle elektromagnetischer Strahlung (z. B. Hochspannungskabeln, Relais und bestimmten tragbaren Funksendegeräten usw.) entfernt sein. Schwierige Umgebungsbedingungen können zusätzliche Abschirmungen erforderlich machen, um Überlagerungen zu vermeiden.

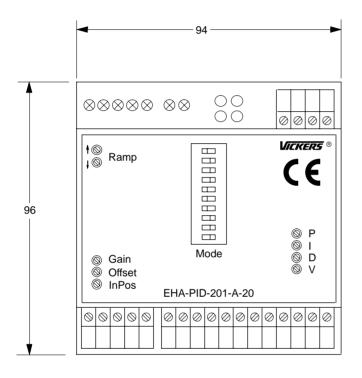
Einstellhinweise

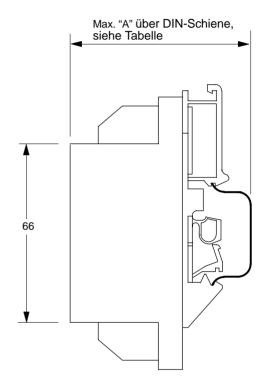
DIL-Schalter

Schalter	EIN	AUS	
D1	Für Sensoren mit 4 bis 20 mA Ausgang	Für Sensoren mit 0 bis 20 mA oder ±10V Ausgang	
D2	P-Anteil 2 bis 50 (vorgegeben)	P-Anteil 0,1 bis 2	
D6	Einseitige Begrenzung des Integrator-Ausgangs (Nur brauchbar für Proportional- Druck- und Drosselventile)	Keine Begrenzungen am Integrator-Ausgang	
D7	Regler-Ausgangssignal, nicht invertiert	Regler-Ausgangssignal, invertiert	
D8	Für Sensoren mit 4 bis 20 mA Ausgang	Für Sensoren mit 0 bis 20 mA oder ±10V Ausgang	
D9	Sensor-Ausgangssignal, nicht invertiert	Sensor-Ausgangssignal, invertiert (Rückführung)	
D10	Zur p/Q-Regelung mit internem Umschalter	Für einfache Systeme in geschlossenem Regelkreiws ohne Umschalter	

Die Schalter D3, D4 und D5 arbeiten zusammen. Sie begrenzen den I-Anteil zwischen 5% und 100% wie folgt:

D3	D4	D5	I-Anteil
EIN	EIN	EIN	100% (vorgegeben)
EIN	EIN	AUS	50%
EIN	AUS	EIN	35%
EIN	AUS	AUS	25%
AUS	EIN	EIN	5.9%
AUS	EIN	AUS	5.8%
AUS	AUS	EIN	5.3%
AUS	AUS	AUS	5.0%


Anpassung der Regler-Parameter


Wenn die Regler-Parameter einmal optimal eingestellt sind, können sie mit einem Ohmmeter gemessen werden. Dies ermöglicht eine einfache Konfiguration des Reglers bei unterschiedlichen Karten oder bei serienmäßigen Maschinen.

Für diesen Zweck befinden sich am PID-Reglermodul vier Meßpunkte. Der Widerstand zwischen den entsprechenden Meßpunkten (V, P, I und D), wie in der Abbildung auf Seite 1 gezeigt, und die Erdung (am Kontakt [1], [11], [13] oder [21]) bestimmen die Regler-Parameter.

Einbauabmessungen

Тур	TS1	TS3	TS4/5
		\bigcup	
Α	64,5	60,0	67,5